Hanxin Wang

🖬 hannawang09@gmail.com 🕐 🗞 hannawang09

Summary

A Ph.D. student researching computer vision with extensive experience in foundation model adaptation and class incremental learning. Familiar with image classification, image segmentation, and activity recognition. Driven by a deep passion for acquiring new scientific skills.

Education

University of Macau	Aug. 2024 - Present
Ph.D student in Computer Science	
Research Interests: Computer vision and machine learning, especially on enhan	ncing the robustness of founda-
tion models when adapting to downstream tasks with limited data.	
University of Electronic Science and Technology of China	Sep. 2021 - Jun. 2024

University of Electronic Science and Technology of China

M.S. in Information and Communication Engineering Research Interests: Computer vision and machine learning, especially the application of continual learning on activity recognition.

Fuzhou University

B.E. in the Internet of Things (Major) and Artificial Intelligence (Minor) Received postgraduate recommendation

Research Experience

Adversarially Regularized Tri-Transformer Fusion for Continual Egocentric Activity Recognition

University of Electronic Science and Technology of China Background:

- Existing continual learning methods hardly acquire discriminative multimodal representations of activity classes from different isolated stages.
- Previous work implicitly generates confused samples through a linear combination method, which has inherent limitations due to the randomness of interpolation.

Contribution:

- Extended the confusion mixup to a generalized adversarial architecture. This extension explicitly generates confusion samples via a learnable approach, further alleviating the confusion between the in and out-stage data in the feature space.
- The proposed method outperforms both SOTA unimodal and multimodal methods on existing multimodal continual learning benchmarks for egocentric activity recognition.

Confusion Mixup Regularized Multimodal Fusion Network for Continual Egocentric Activity Recognition

University of Electronic Science and Technology of China Background:

• Existing continual learning methods ignore the dynamic change of multiple modalities' correlation and hardly learn discriminative representations for the sequentially isolated activity classes from different stages.

Contribution:

• Designed a dynamic expansion fusion architecture to ensure the data within each stage can learn the optimal multi-modal representation.

Mar. 2023 - Jul. 2023

Sep. 2017 - Jun. 2021

Aug. 2023 - Jan. 2024

- Introduced a confusion mixup regularized multimodal fusion network that can capture the dynamic change of correlation from different modalities and help alleviate the confusion between the in-stage data and outstage data in the feature space.
- The proposed method outperforms SOTA unimodal methods by 9.2% on the existing multimodal continual learning benchmark for egocentric activity recognition.

Multi-modal Egocentric Activity Dataset for Continual Learning

University of Electronic Science and Technology of China Background: May. 2022 - Jan. 2023

- Continual multi-modal egocentric activity recognition is highly desirable in practical applications, however, it has not been thoroughly explored due to the lack of relevant datasets.
- Recently, the rapid development of wearable devices has made it easier to gather extensive collections of egocentric data.

Contribution:

- Collected multi-modal egocentric data with self-developed glass which contains synchronized data of video, accelerometer, and gyroscope for 32 types of daily activities.
- Proposed a benchmark model for multi-modal egocentric activity recognition and demonstrated the performance by evaluating the three modalities independently and in combination.
- Assessed the issue of catastrophic forgetting in continual multi-modal egocentric activity recognition and employed well-known continual learning strategies to address this problem.

Skills

- Programming Languages: Python & Pytorch, C/C++ and common data structures.
- Language: Mandarin (Native); English (IELTS: 6.0), good reading and writing skills.
- Applications: Microsoft office (Word, Excel, Powerpoint, etc.).

Honors and Awards

The 5 th Place in the campus women's group of Sichuan University Light Volleyball Com	mpetition May. 2023
The 3 rd Prize academic excellence scholarship of UESTC	Nov. 2022
Outstanding Graduates of Fuzhou University	Jun. 2021
Excellent Student Cadre of Fuzhou University	May. 2020
Provincial 3 rd Prize in National Undergraduate Electronic Design Competition	Sep. 2019
Fuzhou University Tiandixing Scholarship	May. 2019
Merit Student of Fuzhou University	May. 2018
The 1 st Prize comprehensive scholarship of Fuzhou University (three times)	Sep. 2017 - Jun. 2020

Publications

- Shuchang Zhou[†], Hanxin Wang[†], Qingbo Wu^{*}, Fanman Meng, Linfeng Xu, Wei Zhang, Hongliang Li. Adversarially Regularized Tri-Transformer Fusion for continual multimodal egocentric activity recognition. Displays, 2025.
- Hanxin Wang[†], Shuchang Zhou[†], Qingbo Wu^{*}, Hongliang Li, Fanman Meng, Linfeng Xu, Heqian Qiu. Confusion Mixup Regularized Multimodal Fusion Network for Continual Egocentric Activity Recognition. ICCV Workshops, 2023.
- Linfeng Xu^{*}, Qingbo Wu, Lili Pan, Fanman Meng, Hongliang Li, Chiyuan He[‡], **Hanxin Wang**[‡], Shaoxu Cheng[‡], and Yu Dai[‡]. Towards continual egocentric activity recognition: A multi-modal egocentric activity dataset for continual learning. IEEE Transactions on Multimedia, 2023. ([‡] Student Author)